АНАЛИЗ ЗАДАЧ И МЕТОДОВ ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ

Задача принятия решений (ЗПР) — одна из самых распространенных в любой предметной области [1 — 7]. Ее решение сводится к выбору одной или нескольких лучших альтернатив из некоторого набора. Для того чтобы сделать такой выбор, необходимо четко определить цель и критерии (показатели качества), по которым будет проводиться оценка некоторого набора альтернативных вариантов. Выбор метода решения такой задачи зависит от количества и качества доступной информации. Данные, необходимые для осуществления обоснованного выбора, можно разделить на четыре категории: информация об альтернативных вариантах, информация о критериях выбора, информация о предпочтениях, информация об окружении задач.

1.1. Эволюция теории принятия решений. ЭВМ в принятии решений

В своем развитии теория принятия решений прошла через три стадии.
На первой стадии развивался дескриптивный подход к принятию решений. Здесь усилия ученых были направлены на описание процесса выбора решений человеком в целях определения рационального зерна, характерного для всякого разумного выбора. В результате проведенных исследований оказалось, что большинство людей действуют интуитивно, проявляя при этом непоследовательность и противоречивость в своих суждениях. Положительным аспектом исследований в области дескриптивного подхода явилось то, что удалось дать достаточно четкий ответ на вопрос, что может и чего не может человек, решая задачу выбора [8].
На второй стадии исследователи разрабатывали нормативный подход к принятию решений. Однако и здесь их постигла неудача, поскольку идеализированные теории, рассчитанные на сверхрационального человека с мощным интеллектом, не нашли практического применения.
На третьей стадии был развит прескриптивный подход к принятию решений. Он оказался наиболее плодотворным, поскольку предписывал, как должен поступать человек с нормальным интеллектом, желающий напряженно и систематизированно обдумывать все аспекты своей задачи. Прескриптивный подход не гарантирует нахождения оптимального решения в любой ситуации, но обеспечивает выбор такого решения, которое не обременено противоречиями и непоследовательностями. Данный подход предъявляет к человеку серьезные требования по освоению методов и приемов теории принятия решений, а также предписывает проведение многочисленных вычислений, связанных с реализацией этих методов.
Первоначальным импульсом для применения ЭВМ в процессе принятия решений явилась необходимость проведения большого объема вычислений для получения обобщенной оценки путем синтеза всех плюсов и минусов по каждой альтернативе. На этом шаге решением ЗПР занимались специалисты, имеющие широкие знания как в области методов принятия решений, так и в программировании на ЭВМ.
Поскольку на практике указанное сочетание знаний является редким, возникла новая категория специалистов — аналитиков в области принятия решений. Аналитики владели методами принятия решений и навыками программирования и выступали в роли посредников между лицом, принимающим решение (ЛПР), и ЭВМ. Аналитик выполнял следующие функции: уточнял совместно с ЛПР постановку задачи, выбирал метод принятия решений, адекватный задаче, собирал необходимую статистическую и экспертную информацию, строил модель задачи, организовывал обработку накопленной информации на ЭВМ, представлял полученные результаты ЛПР и их интерпретировал.
Следующий шаг в применении ЭВМ для принятия решений был связан с созданием диалоговых систем, позволявших менять интересующие исследователя параметры заложенной в память ЭВМ модели задачи принятия решений, выбирать алгоритм поиска решения или его параметров, исследовать чувствительность полученного решения. Такие системы позволяли получать исчерпывающую информацию для всестороннего обоснования выбираемых решений.
В настоящее время в связи с возросшими возможностями современных ЭВМ разработаны программные информационные системы, обеспечивающие поддержку процесса принятия решений на всех его фазах. Большинство систем принятия решений реализовано на персональных ЭВМ.

1.2. Схема процесса принятия решений

Общая схема процесса принятия решений включает следующие основные этапы:
Этап 1. Предварительный анализ проблемы. На этом этапе определяются:
• главные цели;
• уровни рассмотрения, элементы и структура системы (процесса), типы связей;
• подсистемы, используемые ими основные ресурсы и критерии качества функционирования подсистем;
• основные противоречия, узкие места и ограничения.
Этап 2. Постановка задачи. Постановка конкретной ЗПР включает:
• формулирование задачи;
• определение типа задачи;
• определение множества альтернативных вариантов и основных критериев для выбора из них наилучших;
• выбор метода решения ЗПР.
Этап 3. Получение исходных данных. На данном этапе устанавливаются способы измерения альтернатив. Это либо сбор количественных (статистических) данных [9], либо методы математического или имитационного моделирования, либо методы экспертной оценки [10, 11]. В последнем случае необходимо решить задачи формирования группы экспертов, проведения экспертных опросов, предварительного анализа экспертных оценок.
Этап 4. Решение ЗПР с привлечением математических методов и вычислительной техники, экспертов и лица, принимающего решение. На этом этапе производятся математическая обработка исходной информации, ее уточнение и модификация в случае необходимости. Обработка информации может оказаться достаточно трудоемкой, при этом может возникнуть необходимость совершения нескольких итераций [12] и желание применить различные методы [13 — 16] для решения задачи. Поэтому именно на этом этапе возникает потребность в компьютерной поддержке процесса принятия решений, которая выполняется с помощью автоматизированных систем принятия решений.
Этап 5. Анализ и интерпретация полученных результатов. Полученные результаты могут оказаться неудовлетворительными и потребовать изменений в постановке ЗПР. В этом случае необходимо будет возвратиться на этап 2 или этап 1 и пройти заново весь путь. Решение ЗПР может занимать достаточно длительный промежуток времени, в течение которого окружение задачи может измениться и потребовать корректировок в постановке задачи, а также в исходных данных (например, могут появиться новые альтернативы, требующие введения новых критериев). Задачи принятия решений можно разделить на статические и динамические. К первым относятся задачи, которые не требуют многократного решения через короткие интервалы времени. К динамическим относятся ЗПР, которые возникают достаточно часто. Следовательно, итерационный характер процесса принятия решений можно считать закономерным, что подтверждает необходимость создания и использования эффективных систем компьютерной поддержки. ЗПР, требующие одного цикла, можно скорее считать исключением, чем правилом.

1.3. Классификация задач принятия решений

Задачи принятия решений отличаются большим многообразием, классифицировать их можно по различным признакам, характеризующим количество и качество доступной информации. В общем случае задачи принятия решений можно представить следующим набором информации [8, 17, 18]:
<Т, A, К, X, F, G, D>,
где Т— постановка задачи (например, выбрать лучшую альтернативу или упорядочить весь набор);
А — множество допустимых альтернативных вариантов;
К— множество критериев выбора;
Х— множество методов измерения предпочтений (например, использование различных шкал);
F— отображение множества допустимых альтернатив в множество критериальных оценок (исходы);
G — система предпочтений эксперта;
D — решающее правило, отражающее систему предпочтений.
Любой из элементов этого набора может служить классификационным признаком принятия решений.
Рассмотрим традиционные классификации:
1. По виду отображения F. Отображение множества А и К может иметь детерминированный характер, вероятностный или неопределенный вид, в соответствии с которым задачи принятия решений можно разделить на задачи в условиях риска и задачи в условиях неопределенности.
2. Мощность множества К. Множество критериев выбора может содержать один элемент или несколько. В соответствии с этим задачи принятия решений можно разделить на задачи со скалярным критерием и задачи с векторным критерием (многокритериальное принятие решений).
3. Тип системы G. Предпочтения могут формироваться одним лицом или коллективом, в зависимости от этого задачи принятия решений можно классифицировать на задачи индивидуального принятия решений и задачи коллективного принятия решений.
Задачи принятия решений в условиях определенности. К этому классу относятся задачи, для решения которых имеется достаточная и достоверная количественная информация. В этом случае с успехом применяются методы математического программирования, суть которых состоит в нахождении оптимальных решений на базе математической модели реального объекта. Основные условия применимости методов математического программирования следующие:
1. Задача должна быть хорошо формализована, т. е. имеется адекватная математическая модель реального объекта.
2. Существует некоторая единственная целевая функция (критерий оптимизации), позволяющая судить о качестве рассматриваемых альтернативных вариантов.
3. Имеется возможность количественной оценки значений целевой функции.
4. Задача имеет определенные степени свободы (ресурсы оптимизации), т. е. некоторые параметры функционирования системы, которые можно произвольно изменять в некоторых пределах в целях улучшения значений целевой функции.
Задачи в условиях риска. В тех случаях, когда возможные исходы можно описать с помощью некоторого вероятностного распределения, получаем задачи принятия решений в условиях риска. Для построения распределения вероятностей необходимо либо иметь в распоряжении статистические данные, либо привлекать знания экспертов. Обычно для решения задач этого типа применяются методы теории одномерной или многомерной полезности. Эти задачи занимают место на границе между задачами принятия решений в условиях определенности и неопределенности. Для решения этих задач привлекается вся доступная информация (количественная и качественная).
Задачи в условиях неопределенности. Эти задачи имеют место тогда, когда информация, необходимая для принятия решений, является неточной, неполной, неколичественной, а формальные модели исследуемой системы либо слишком сложны, либо отсутствуют. В таких случаях для решения задачи обычно привлекаются знания экспертов. В отличие от подхода, принятого в экспертных системах, для решения ЗПР знания экспертов обычно выражены в виде некоторых количественных данных, называемых предпочтениями.
Выбор и нетривиальность задач принятия решений. Следует отметить, что одним из условий существования задачи принятия решений является наличие нескольких допустимых альтернатив, из которых следует выбрать в некотором смысле лучшую. При наличии одной альтернативы, удовлетворяющей фиксированным условиям или ограничениям, задача принятия решений не имеет места.
Задача принятия решений называется тривиальной, если она характеризуется исключительно одним критерием К и всем альтернативам Аi приписаны конкретные числовые оценки в соответствии со значениями указанного критерия (рис. 1.1 а).

Классификация методов принятия решений

Существует множество классификаций методов принятия решений, основанных на применении различных признаков [10, 19 — 23]. В табл. 1.1 приведена одна из возможных классификаций, признаками которой являются содержание и тип получаемой экспертной информации.

Таблица 1.1

Классификация методов принятия решений
№ п/п Содержание информации Тип информации Метод принятия решений
1 Экспертная информация не требуется    Метод доминирования [24, 25]
Метод на основе глобальных критериев [26, 27]
2
Информация о предпочтениях на множестве критериев
Качественная информация

Количественная оценка предпочтительности критериев

Количественная информация о замещениях
Лексикографическое упорядочение [24,25]
Сравнение разностей критериальных оценок [22,24]
Метод припасовывания [24]
Методы "эффективность-стоимость" [24,28]
Методы свертки на иерархии критериев [29,30]
Методы порогов [24, 31]
Методы идеальной точки [24]
Метод кривых безразличия [10,24] Методы теории ценности [10, 24]

3
Информация о предпочтительности альтернатив
Оценка предпочтительности парных сравнений
Методы математического программирования [32,33]
Линейная и нелинейная свертка при интерактивном способе определения ее параметров [34]

4

Информация о предпочтениях на множестве критериев и о последствиях альтернатив

Отсутствие информации о предпочтениях; количественная и/или интервальная информация о последствиях. Качественная информация о предпочтениях и количественная о последствиях

Качественная (порядковая) информация о предпочтениях и последствиях
Количественная информация о предпочтениях и последствиях
Методы с дискретизацией неопределенности [8,26]
Стохастическое доминирование [8,10,22]
Методы принятия решений в условиях риска и неопределенности на основе глобальных критериев [8, 35]
Метод анализа иерархий [36]
Методы теории нечетких множеств [7, 13, 14, 15, 17, 37]
Метод практического принятия решений [8, 24]
Методы выбора статистически ненадежных решений [8,38]
Методы кривых безразличия для принятия решений в условиях риска и неопределенности [8]
Методы деревьев решений [8,37]
Декомпозиционные методы теории ожидаемой полезности [8, 10,11]

Используемый принцип классификации позволяет достаточно четко выделить четыре большие группы методов, причем три группы относятся к принятию решений в условиях определенности, а четвертая — к принятию решений в условиях неопределенности. Из множества известных методов и подходов к принятию решений наибольший интерес представляют те, которые дают возможность учитывать многокритериальность и неопределенность, а также позволяют осуществлять выбор решений из множеств альтернатив различного типа при наличии критериев, имеющих разные типы шкал измерения (эти методы относятся к четвертой группе).
В свою очередь, среди методов, образующих четвертую группу, наиболее перспективными являются декомпозиционные методы теории ожидаемой полезности, методы анализа иерархий и теории нечетких множеств. Данный выбор определен тем, что эти методы в наибольшей степени удовлетворяют требованиям универсальности, учета многокритериальности выбора в условиях неопределенности из дискретного или непрерывного множества альтернатив, простоты подготовки и переработки экспертной информации.
Охарактеризовать достаточно полно все методы принятия решений, относящиеся к четвертой группе, в рамках данной работы невозможно, поэтому в дальнейшем рассматриваются только три подхода к принятию решений в условиях неопределенности, которые получили наиболее широкое воплощение в системах компьютерной поддержки, а именно: подходы, основанные на методах теории полезности, анализа иерархий и теории нечетких множеств.

Классификация методов системного анализа
Метод системного анализа - это путь, способ решения проблемы. Другими словами, это некоторая формализация, позволяющая получить такое решение.
Классификация методов системного анализа тесно связана с понятием уровней научного познания. Различают два таких уровня: эмпирический (дословно – воспринимаемый посредством органов чувств) и теоретический.
Эмпирический уровень научного познания характеризуется непосредственным исследованием научного реально существующих, чувственно воспринимаемых объектов. Соответствующие методы можно разделить на две погруппы:
   – методы вычленения и исследования эмпирического объекта;
   – методы обработки и систематизации полученного эмпирического знания;
Теоретический уровень научного познания характеризуется опосредствованным исследованием действительности с помощью систем абстракций «высшего порядка» - таких как понятия, умозаключения, законы, категории, принципы и другие формы «мыслительных операций». Системный анализ как прикладная дисциплина, имеет отношение лишь к подгруппе теоретических методов нижнего уровня – методов построения и исследования идеализированного объекта.
   Выделяя в научном исследовании указанные два различных уровня не следует, однако, их отрывать друг от друга и противопоставлять. Ведь эмпирический и теоретический уровни познания взаимосвязаны между собой. Эмпирический уровень выступает в качестве основы, фундамента теоретического. Гипотезы и теории формируются в процессе теоретического осмысления научных фактов, статических данных, получаемых на эмпирическом уровне. Эмпирическое исследование, выявляя с помощью наблюдений и экспериментов новые данные, стимулирует теоретическое познание (которое их обобщает и объясняет), ставит перед ним новые более сложные задачи. С другой стороны, теоретическое познание, развивая и конкретизируя на базе эмпирии новое собственное содержание, открывает новые, более широкие горизонты для эмпирического познания, ориентирует и направляет его в поисках новых фактов, способствует совершенствованию его методов и средств и т.д. Эмпирический уровень научного познания не может существовать без достижений теоретического уровня. Эмпирическое исследование обычно опирается на определенную теоретическую конструкцию, которая определяет направление этого исследования, обуславливает и обосновывает применяемые при этом методы.
Методы системного анализа имеют свои преимущества и недостатки, определяющие их область применения как по отношению к типу проблемы, так и к этапу ее решения. Для принятия решений в условиях большей определенности, что обычно имеет место на нижнем уровне иерархии экономических систем, успешно применяются формальные математические методы (разновидность языкового моделирования). По мере перехода на более высокие уровни иерархии количественная определенность в постановке и решении проблем уменьшается, цели, и другие элементы системного анализа приобретают все более качественный характер. Соответственно, все большее число задач решается в условиях повышенного риска и неопределенности. Как следствие, возрастающее значение приобретают субъективные методы анализа, оперирующие с мысленными моделями, тогда как чисто математические методы начинают играть вспомогательную роль.
   Преимуществом методов системного анализа уровня модельного эксперимента выше является возможность проводить исследования какого-либо объекта без непосредственного обращения к нему.